OMIA 002132-9615 : Abortion (embryonic lethality), BTBD17-related in Canis lupus familiaris

Mendelian trait/disorder: yes

Mode of inheritance: Autosomal Recessive Lethal

Considered a defect: yes

Key variant known: yes

Year key variant first reported: 2017

Inheritance: Meyers-Wallen et al. (2017): "Because genotyping results at the 6048201 locus indicated that the G+G+ [homozygous for the G insertion] genotype was uncommon in XX DSD purebred pet dogs (3% G+G+, . . . ), but common in mixed breed XX DSD in the model pedigree (83% G+G+, . . . ), we hypothesized this genotype was deleterious in purebred dogs. Therefore, we genotyped pedigrees from purebred and crossbred breeding experiments in which the probability of G+G+ offspring varied from 0.25–0.5 . . . . All offspring were born alive and birth weights within the same litter were similar. None of the offspring were G+G+ genotype, including crossbred offspring sired by males from the model pedigree that had previously produced G+G+ and G+/- XX DSD offspring (sires C734 and C752, . . . ). These results indicated that embryonic lethality was associated with the G+G+ genotype in the GSHP genetic background."

Molecular basis: Meyers-Wallen et al. (2017) reported a variant in intron 1 of the BTBD17 gene ("a guanine insertion (G+) at CFA9: 6048201–6048202 . . . , rs852549625)") that is homozygous lethal in dogs with German shorthair pointer background.

Breed: German Shorthair Pointer.

Associated gene:

Symbol Description Species Chr Location OMIA gene details page Other Links
BTBD17 BTB (POZ) domain containing 17 Canis lupus familiaris 9 NC_006591.3 (6046811..6052843) BTBD17 Homologene, Ensembl, NCBI gene

Variants

By default, variants are sorted chronologically by year of publication, to provide a historical perspective. Readers can re-sort on any column by clicking on the column header. Click it again to sort in a descending order. To create a multiple-field sort, hold down Shift while clicking on the second, third etc relevant column headers.

WARNING! Inclusion of a variant in this table does not automatically mean that it should be used for DNA testing. Anyone contemplating the use of any of these variants for DNA testing should examine critically the relevant evidence (especially in breeds other than the breed in which the variant was first described). If it is decided to proceed, the location and orientation of the variant sequence should be checked very carefully.

Breed(s) Variant Phenotype Gene Allele Type of Variant Reference Sequence Chr. g. or m. c. or n. p. Verbal Description EVA ID Year Published PubMed ID(s) Acknowledgements
German Shorthair Pointer Abortion (embryonic lethality), BTBD17-related BTBD17 insertion, small (<=20) CanFam 3.1 9 g.6048201_6048202insG rs852549625 2017 29053721

Reference


2017 Meyers-Wallen, V.N., Boyko, A.R., Danko, C.G., Grenier, J.K., Mezey, J.G., Hayward, J.J., Shannon, L.M., Gao, C., Shafquat, A., Rice, E.J., Pujar, S., Eggers, S., Ohnesorg, T., Sinclair, A.H. :
XX Disorder of Sex Development is associated with an insertion on chromosome 9 and downregulation of RSPO1 in dogs (Canis lupus familiaris). PLoS One 12:e0186331, 2017. Pubmed reference: 29053721. DOI: 10.1371/journal.pone.0186331.

Edit History


  • Created by Frank Nicholas on 24 Oct 2017