OMIA 001744-9940 : Mastitis, susceptibility/resistance to in Ovis aries

In other species: cattle , goat , water buffalo

Mendelian trait/disorder: no

Mode of inheritance: Multifactorial

Considered a defect: yes

Key variant known: yes

Year key variant first reported: 2015

Mapping: Rupp et al. (2015) "describe the discovery, fine mapping and functional characterization of a genetic variant associated with elevated milk leukocytes count, or SCC, as a proxy for mastitis. After implementing genome-wide association studies, we identified a major QTL associated with SCC on ovine chromosome 3. Fine mapping of the region, using full sequencing with 12X coverage in three animals, provided one strong candidate SNP that mapped to the coding sequence of a highly conserved gene, suppressor of cytokine signalling 2 (Socs2). The frequency of the SNP associated with increased SCC was 21.7% and the Socs2 genotype explained 12% of the variance of the trait."

Zhou et al. (2019) "successfully obtained lambs with defined point mutations resulting in a p.96R > C substitution in SOCS2 by the co-injection of [base editer] BE3 mRNA and a single guide RNA (sgRNA) into sheep zygotes. The observed efficiency of the single nucleotide exchange in newborn animals was as high as 25%. Observations of body size and body weight in the edited group showed that gene modification contributes to enhanced growth traits in sheep." (This study involves genetically modified organisms (GMO)).

Molecular basis: Rupp et al. (2015): "Only a single SNP mapped to the coding region of a [positional candidate] gene with a non-synonymous change in an amino acid. Modification of the C base in the reference sequence (OAR3, 129722200 bp) to a T in susceptible animals encoded an arginine to cysteine substitution at position 96 (p.R96C) of the Suppressor of Cytokine Signaling 2 (SOCS2) protein."

Associated gene:

Symbol Description Species Chr Location OMIA gene details page Other Links
SOCS2 suppressor of cytokine signaling 2 Ovis aries 3 NC_056056.1 (129873914..129879019) SOCS2 Homologene, Ensembl, NCBI gene

Variants

By default, variants are sorted chronologically by year of publication, to provide a historical perspective. Readers can re-sort on any column by clicking on the column header. Click it again to sort in a descending order. To create a multiple-field sort, hold down Shift while clicking on the second, third etc relevant column headers.

WARNING! Inclusion of a variant in this table does not automatically mean that it should be used for DNA testing. Anyone contemplating the use of any of these variants for DNA testing should examine critically the relevant evidence (especially in breeds other than the breed in which the variant was first described). If it is decided to proceed, the location and orientation of the variant sequence should be checked very carefully.

Since October 2021, OMIA includes a semiautomated lift-over pipeline to facilitate updates of genomic positions to a recent reference genome position. These changes to genomic positions are not always reflected in the ‘acknowledgements’ or ‘verbal description’ fields in this table.

OMIA Variant ID Breed(s) Variant Phenotype Gene Allele Type of Variant Source of Genetic Variant Reference Sequence Chr. g. or m. c. or n. p. Verbal Description EVA ID Inferred EVA rsID Year Published PubMed ID(s) Acknowledgements
1420 Elevated milk leukocytes count SOCS2 missense Naturally occurring variant Oar_rambouillet_v1.0 3 g.139302270C>T c.286C>T p.(R96C) Oar_v3.1 position g.129722200C>T, transcripts XM_027967202.1, ENSOART00020018904.1:c.286C>T ENSOARP00020015648.1:p.Arg96Cys rs868996547 2015 26658352

References


Note: the references are listed in reverse chronological order (from the most recent year to the earliest year), and alphabetically by first author within a year.
2021 Derks, M.F.L., Steensma, M. :
Review: Balancing selection for deleterious alleles in livestock. Front Genet 12:761728, 2021. Pubmed reference: 34925454. DOI: 10.3389/fgene.2021.761728.
Mousa, W.S., Abdeen, E.E., Hegazy, Y.M. :
Chronic incurable mastitis in sheep: prevalence, identification of predisposing factors, and genotyping of fungal causative species using PCR-RFLP. Trop Anim Health Prod 53:268, 2021. Pubmed reference: 33866417. DOI: 10.1007/s11250-021-02703-5.
2019 Banos, G., Clark, E.L., Bush, S.J., Dutta, P., Bramis, G., Arsenos, G., Hume, D.A., Psifidi, A. :
Genetic and genomic analyses underpin the feasibility of concomitant genetic improvement of milk yield and mastitis resistance in dairy sheep. PLoS One 14:e0214346, 2019. Pubmed reference: 31765378. DOI: 10.1371/journal.pone.0214346.
Oget, C., Allain, C., Portes, D., Foucras, G., Stella, A., Astruc, J.M., Sarry, J., Tosser-Klopp, G., Rupp, R. :
A validation study of loci associated with mastitis resistance in two French dairy sheep breeds. Genet Sel Evol 51:5, 2019. Pubmed reference: 30760210. DOI: 10.1186/s12711-019-0448-8.
Oget, C., Teissier, M., Astruc, J.M., Tosser-Klopp, G., Rupp, R. :
Alternative methods improve the accuracy of genomic prediction using information from a causal point mutation in a dairy sheep model. BMC Genomics 20:719, 2019. Pubmed reference: 31533617. DOI: 10.1186/s12864-019-6068-4.
Zhou, S., Cai, B., He, C., Wang, Y., Ding, Q., Liu, J., Liu, Y., Ding, Y., Zhao, X., Li, G., Li, C., Yu, H., Kou, Q., Niu, W., Petersen, B., Sonstegard, T., Ma, B., Chen, Y., Wang, X. :
Programmable base editing of the sheep genome revealed no genome-wide off-target mutations. Front Genet 10:215, 2019. Pubmed reference: 30930940. DOI: 10.3389/fgene.2019.00215.
2018 Bouvier-Muller, J., Allain, C., Enjalbert, F., Farizon, Y., Portes, D., Foucras, G., Rupp, R. :
Somatic cell count-based selection reduces susceptibility to energy shortage during early lactation in a sheep model. J Dairy Sci 101:2248-2259, 2018. Pubmed reference: 29331464. DOI: 10.3168/jds.2017-13479.
Gutiérrez-Gil, B., Esteban-Blanco, C., Suarez-Vega, A., Arranz, J.J. :
Detection of quantitative trait loci and putative causal variants affecting somatic cell score in dairy sheep by using a 50K SNP chip and whole-genome sequencing. J Dairy Sci 101:9072-9088, 2018. Pubmed reference: 30100503. DOI: 10.3168/jds.2018-14736.
McLaren, A., Kaseja, K., Yates, J., Mucha, S., Lambe, N.R., Conington, J. :
New mastitis phenotypes suitable for genomic selection in meat sheep and their genetic relationships with udder conformation and lamb live weights. Animal :1-10, 2018. Pubmed reference: 29576020. DOI: 10.1017/S1751731118000393.
2017 Banos, G., Bramis, G., Bush, S.J., Clark, E.L., McCulloch, M.E.B., Smith, J., Schulze, G., Arsenos, G., Hume, D.A., Psifidi, A. :
The genomic architecture of mastitis resistance in dairy sheep. BMC Genomics 18:624, 2017. Pubmed reference: 28814268. DOI: 10.1186/s12864-017-3982-1.
2016 Bouvier-Muller, J., Allain, C., Enjalbert, F., Tabouret, G., Portes, D., Caubet, C., Tasca, C., Foucras, G., Rupp, R. :
Response to dietary-induced energy restriction in dairy sheep divergently selected for resistance or susceptibility to mastitis. J Dairy Sci 99:480-92, 2016. Pubmed reference: 26601588. DOI: 10.3168/jds.2015-9785.
Tolone, M., Larrondo, C., Yáñez, J.M., Newman, S., Sardina, M.T., Portolano, B. :
Assessment of genetic variation for pathogen-specific mastitis resistance in Valle del Belice dairy sheep. BMC Vet Res 12:158, 2016. Pubmed reference: 27464952. DOI: 10.1186/s12917-016-0781-x.
2015 Bishop, S.C. :
Genetic resistance to infections in sheep. Vet Microbiol 181:2-7, 2015. Pubmed reference: 26260859. DOI: 10.1016/j.vetmic.2015.07.013.
Gelasakis, A.I., Mavrogianni, V.S., Petridis, I.G., Vasileiou, N.G., Fthenakis, G.C. :
Mastitis in sheep--The last 10 years and the future of research. Vet Microbiol 181:136-46, 2015. Pubmed reference: 26216457. DOI: 10.1016/j.vetmic.2015.07.009.
Rupp, R., Senin, P., Sarry, J., Allain, C., Tasca, C., Ligat, L., Portes, D., Woloszyn, F., Bouchez, O., Tabouret, G., Lebastard, M., Caubet, C., Foucras, G., Tosser-Klopp, G. :
A point mutation in suppressor of cytokine signalling 2 (Socs2) increases the susceptibility to inflammation of the mammary gland while associated with higher body weight and size and higher milk production in a sheep model. PLoS Genet 11:e1005629, 2015. Pubmed reference: 26658352. DOI: 10.1371/journal.pgen.1005629.
2010 Riggio, V., Portolano, B., Bovenhuis, H., Bishop, S.C. :
Genetic parameters for somatic cell score according to udder infection status in Valle del Belice dairy sheep and impact of imperfect diagnosis of infection. Genet Sel Evol 42:30, 2010. Pubmed reference: 20659318. DOI: 10.1186/1297-9686-42-30.
2009 Carta, A., Casu, S., Salaris, S. :
Invited review: Current state of genetic improvement in dairy sheep. J Dairy Sci 92:5814-33, 2009. Pubmed reference: 19923587. DOI: 10.3168/jds.2009-2479.
Rupp, R., Bergonier, D., Dion, S., Hygonenq, M.C., Aurel, M.R., Robert-Granié, C., Foucras, G. :
Response to somatic cell count-based selection for mastitis resistance in a divergent selection experiment in sheep. J Dairy Sci 92:1203-19, 2009. Pubmed reference: 19233814. DOI: 10.3168/jds.2008-1435.
2008 Conington, J., Cao, G., Stott, A., Bünger, L. :
Breeding for resistance to mastitis in United Kingdom sheep, a review and economic appraisal. Vet Rec 162:369-76, 2008. Pubmed reference: 18359930.
2007 Fragkou, I.A., Skoufos, J., Cripps, P.J., Kyriazakis, I., Papaioannou, N., Boscos, C.M., Tzora, A., Fthenakis, G.C. :
Differences in susceptibility to Mannheimia haemolytica-associated mastitis between two breeds of dairy sheep. J Dairy Res 74:349-55, 2007. Pubmed reference: 17451623. DOI: 10.1017/S0022029907002518.
2003 Bergonier, D., de Crémoux, R., Rupp, R., Lagriffoul, G., Berthelot, X. :
Mastitis of dairy small ruminants. Vet Res 34:689-716, 2003. Pubmed reference: 14556701. DOI: 10.1051/vetres:2003030.
2001 Barillet, F., Rupp, R., Mignon-Grasteau, S., Astruc, J.M., Jacquin, M. :
Genetic analysis for mastitis resistance and milk somatic cell score in French Lacaune dairy sheep. Genet Sel Evol 33:397-415, 2001. Pubmed reference: 11559483. DOI: 10.1051/gse:2001124.

Edit History


  • Created by Frank Nicholas on 12 Aug 2016
  • Changed by Imke Tammen2 on 19 Jan 2022