OMIA:001990-9823 : Cancer, TP53-related in Sus scrofa (pig)

In other species: crab-eating macaque , dog , golden hamster

Categories: Neoplasm

Possibly relevant human trait(s) and/or gene(s)s (MIM numbers): 109800 (trait) , 114480 (trait) , 137215 (trait) , 601626 (trait) , 211980 (trait) , 260350 (trait) , 614470 (trait) , 202300 (trait) , 114500 (trait) , 114550 (trait) , 607107 (trait) , 259500 (trait) , 614740 (trait) , 137800 (trait) , 191170 (gene) , 190070 (gene) , 151623 (trait)

Links to MONDO diseases: No links.

Mendelian trait/disorder: unknown

Considered a defect: yes

Species-specific description: Genetically-modified organism; GMO

Molecular basis: Sieren et al. (2014) created pigs transgenic for the R167H variant of TP53, equivalent to the human variant R175H that is "one of the most frequent missense mutations in sporadic [human] tumors". Homozygotes for this variant "developed lymphomas and osteogenic tumors, recapitulating the tumor types observed in mice and humans expressing orthologous TP53 mutant alleles". Schook et al. (2015) developed a line of pigs transgenic for the same TP53 variant and for another oncogenic variant, namely G12D in the KRAS gene. Tanihara et al. (2018) "generated TP53-mutant pigs by gene editing via electroporation of the Cas9 protein (GEEP), a process that involves introducing the Cas9 protein and single-guide RNA (sgRNA) targeting exon 3 and intron 4 of TP53 into in vitro-fertilized zygotes. ... Our results indicated that the mutations caused by gene editing successfully induced tumor phenotypes in both TP53 mosaic- and bi-allelic mutant pigs."

Genetic engineering: Yes - variants have been created artificially, e.g. by genetic engineering or gene editing
Have human generated variants been created, e.g. through genetic engineering and gene editing

Associated genes:

Symbol Description Species Chr Location OMIA gene details page Other Links
TP53 tumor protein p53 Sus scrofa 12 NC_010454.4 (52953786..52939643) TP53 Homologene, Ensembl , NCBI gene
KRAS Kirsten rat sarcoma viral oncogene homolog Sus scrofa 5 NC_010447.5 (48508774..48546260) KRAS Homologene, Ensembl , NCBI gene

Cite this entry

Nicholas, F. W., Tammen, I., & Sydney Informatics Hub. (2023). OMIA:001990-9823: Online Mendelian Inheritance in Animals (OMIA) [dataset]. https://omia.org/. https://doi.org/10.25910/2AMR-PV70

References

Note: the references are listed in reverse chronological order (from the most recent year to the earliest year), and alphabetically by first author within a year.

2024 Joshi, K., Telugu, B.P., Prather, R.S., Bryan, J.N., Hoffman, T.J., Kaifi, J.T., Rachagani, S. :
Benefits and opportunities of the transgenic Oncopig cancer model. Trends Cancer :S2405-8033(24)00005-0, 2024. Pubmed reference: 38290969. DOI: 10.1016/j.trecan.2024.01.005.
2023 Ghosn, M., Elsakka, A.S., Petre, E.N., Cheleuitte-Nieves, C., Tammela, T., Monette, S., Ziv, E., Schachtschneider, K.M., Srimathveeravalli, G., Yarmohammadi, H., Edward Boas, F., Solomon, S.B. :
Induction and preliminary characterization of neoplastic pulmonary nodules in a transgenic pig model. Lung Cancer 178:157-165, 2023. Pubmed reference: 36868176. DOI: 10.1016/j.lungcan.2023.02.013.
Thongkittidilok, C., Hirata, M., Lin, Q., Torigoe, N., Liu, B., Sato, Y., Nagahara, M., Tanihara, F., Otoi, T. :
Mosaic TP53 mutation on tumour development in pigs: A case study. Vet Med Int 2023:7000858, 2023. Pubmed reference: 37609627. DOI: 10.1155/2023/7000858.
Wang, L., Piao, Y., Guo, F., Wei, J., Chen, Y., Dai, X., Zhang, X. :
Current progress of pig models for liver cancer research. Biomed Pharmacother 165:115256, 2023. Pubmed reference: 37536038. DOI: 10.1016/j.biopha.2023.115256.
2022 Carlson, A.L., Carrazco-Carrillo, J., Loder, A., Elkhadragy, L., Schachtschneider, K.M., Padilla-Benavides, T. :
The Oncopig as an emerging model to investigate copper regulation in cancer. Int J Mol Sci 23:14012, 2022. Pubmed reference: 36430490. DOI: 10.3390/ijms232214012.
Elkhadragy, L., Dasteh Goli, K., Totura, W.M., Carlino, M.J., Regan, M.R., Guzman, G., Schook, L.B., Gaba, R.C., Schachtschneider, K.M. :
Effect of CRISPR knockout of AXIN1 or ARID1A on proliferation and migration of porcine hepatocellular carcinoma. Front Oncol 12:904031, 2022. Pubmed reference: 35669430. DOI: 10.3389/fonc.2022.904031.
2021 Elkhadragy, L., Regan, M.R., M Totura, W., Goli, K.D., Patel, S., Garcia, K., Stewart, M., Schook, L.B., Gaba, R.C., Schachtschneider, K.M. :
Generation of genetically tailored porcine liver cancer cells by CRISPR/Cas9 editing. Biotechniques 70:37-48, 2021. Pubmed reference: 33222517. DOI: 10.2144/btn-2020-0119.
Jarvis, S., Koumadoraki, E., Madouros, N., Sharif, S., Saleem, A., Khan, S. :
Non-rodent animal models of osteosarcoma: A review. Cancer Treat Res Commun 27:100307, 2021. Pubmed reference: 33453605. DOI: 10.1016/j.ctarc.2021.100307.
Li, H., Cheng, W., Chen, B., Pu, S., Fan, N., Zhang, X., Jiao, D., Shi, D., Guo, J., Li, Z., Qing, Y., Jia, B., Zhao, H.Y., Wei, H.J. :
Efficient generation of P53 biallelic mutations in Diannan Miniature pigs using RNA-guided base editing. Life (Basel) 11:1417, 2021. Pubmed reference: 34947951. DOI: 10.3390/life11121417.
Rubinstein, C.D., McLean, D.T., Lehman, B.P., Meudt, J.J., Schomberg, D.T., Krentz, K.J., Reichert, J.L., Meyer, M.B., Adams, M., Konsitzke, C.M., Shanmuganayagam, D. :
Assessment of mosaicism and detection of cryptic alleles in CRISPR/Cas9-Engineered Neurofibromatosis Type 1 and TP53 mutant porcine models reveals overlooked challenges in precision modeling of human diseases. Front Genet 12:721045, 2021. Pubmed reference: 34630515. DOI: 10.3389/fgene.2021.721045.
Segatto, N.V., Bender, C.B., Seixas, F.K., Schachtschneider, K., Schook, L., Robertson, N., Qazi, A., Carlino, M., Jordan, L., Bolt, C., Collares, T. :
Perspective: Humanized pig models of bladder cancer. Front Mol Biosci 8:681044, 2021. Pubmed reference: 34079821. DOI: 10.3389/fmolb.2021.681044.
Tanihara, F., Hirata, M., Otoi, T. :
Current status of the application of gene editing in pigs. J Reprod Dev 67:177-187, 2021. Pubmed reference: 33840678. DOI: 10.1262/jrd.2021-025.
Zhang, J., Khazalwa, E.M., Abkallo, H.M., Zhou, Y., Nie, X., Ruan, J., Zhao, C., Wang, J., Xu, J., Li, X., Zhao, S., Zuo, E., Steinaa, L., Xie, S. :
The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research. J Genet Genomics 48:347-360, 2021. Pubmed reference: 34144928. DOI: 10.1016/j.jgg.2021.03.015.
2018 Tanihara, F., Hirata, M., Nguyen, N.T., Le, Q.A., Hirano, T., Takemoto, T., Nakai, M., Fuchimoto, D.I., Otoi, T. :
Generation of a TP53-modified porcine cancer model by CRISPR/Cas9-mediated gene modification in porcine zygotes via electroporation. PLoS One 13:e0206360, 2018. Pubmed reference: 30352075. DOI: 10.1371/journal.pone.0206360.
2017 Shen, Y., Xu, K., Yuan, Z., Guo, J., Zhao, H., Zhang, X., Zhao, L., Qing, Y., Li, H., Pan, W., Jia, B., Zhao, H.Y., Wei, H.J. :
Efficient generation of P53 biallelic knockout Diannan miniature pigs via TALENs and somatic cell nuclear transfer. J Transl Med 15:224, 2017. Pubmed reference: 29100547. DOI: 10.1186/s12967-017-1327-0.
2016 Saalfrank, A., Janssen, K.P., Ravon, M., Flisikowski, K., Eser, S., Steiger, K., Flisikowska, T., Müller-Fliedner, P., Schulze, É., Brönner, C., Gnann, A., Kappe, E., Böhm, B., Schade, B., Certa, U., Saur, D., Esposito, I., Kind, A., Schnieke, A. :
A porcine model of osteosarcoma. Oncogenesis 5:e210, 2016. Pubmed reference: 26974205. DOI: 10.1038/oncsis.2016.19.
2015 Schook, L.B., Collares, T.V., Hu, W., Liang, Y., Rodrigues, F.M., Rund, L.A., Schachtschneider, K.M., Seixas, F.K., Singh, K., Wells, K.D., Walters, E.M., Prather, R.S., Counter, C.M. :
A genetic porcine model of cancer. PLoS One 10:e0128864, 2015. Pubmed reference: 26132737. DOI: 10.1371/journal.pone.0128864.
2014 Sieren, J.C., Meyerholz, D.K., Wang, X.J., Davis, B.T., Newell, J.D., Hammond, E., Rohret, J.A., Rohret, F.A., Struzynski, J.T., Goeken, J.A., Naumann, P.W., Leidinger, M.R., Taghiyev, A., Van Rheeden, R., Hagen, J., Darbro, B.W., Quelle, D.E., Rogers, C.S. :
Development and translational imaging of a TP53 porcine tumorigenesis model. J Clin Invest 124:4052-66, 2014. Pubmed reference: 25105366. DOI: 10.1172/JCI75447.

Edit History


  • Created by Frank Nicholas on 13 Apr 2016
  • Changed by Frank Nicholas on 14 Aug 2016
  • Changed by Frank Nicholas on 08 Aug 2017
  • Changed by Imke Tammen2 on 16 Jun 2021
  • Changed by Imke Tammen2 on 25 Jun 2021
  • Changed by Imke Tammen2 on 18 Sep 2021
  • Changed by Imke Tammen2 on 26 Dec 2021
  • Changed by Imke Tammen2 on 09 Jan 2022
  • Changed by Imke Tammen2 on 11 Jan 2022
  • Changed by Imke Tammen2 on 18 Jan 2023
  • Changed by Imke Tammen2 on 18 Dec 2023