OMIA:000683-9823 : Muscular hypertrophy (double muscling) in Sus scrofa (pig)

In other species: Japanese flounder , rock pigeon , chicken , dog , taurine cattle , goat , sheep , rabbit , water buffalo , Japanese quail , yellow catfish

Categories: Muscle phene

Links to possible relevant human trait(s) and/or gene(s) in OMIM: 601788 (gene) , 614160 (trait)

Links to relevant human diseases in MONDO:

Mendelian trait/disorder: yes

Mode of inheritance: Autosomal

Considered a defect: no

Key variant known: yes

Year key variant first reported: 2008

Cross-species summary: Abnormal increase in muscular tissue caused entirely by enlargement of existing cells (in contrast to muscular hyperplasia, in which the abnormal increase in muscular tissue is due to the formation and growth of new, normal muscle cells)

Species-specific description: Several papers listed here report the creation of genetically-modified organisms (GMO).

Molecular basis: On the very reasonable assumption that the muscular hypertrophy of Pietrain pigs is homologous to the double-muscling trait of certain cattle breeds (especially the Belgian Blue) caused by mutations in the MSTN gene, Stinckens et al. (2008) cloned and sequenced the porcine MSTN gene, and discovered a likely causal mutation, namely g.447A>G in the promoter which "changes the G nucleotide at position 8 of the MEF3 binding site into an A nucleotide, thus disrupting the MEF3 binding site".
Ren et al. (2024) “generated porcine fibroblasts with simultaneous knockouts of IGF2, ANPEP, CD163, and MSTN via Cas12iMax in one step. Phenotypically stable pigs were created through somatic cell nuclear transfer technology. They exhibited improved growth performance and muscle quality.” This study involves genetically modified organisms (GMO)

Genetic engineering: Yes - in addition to the occurrence of natural variants, variants have been created artificially, e.g. by genetic engineering or gene editing
Have human generated variants been created, e.g. through genetic engineering and gene editing

Associated gene:

Symbol Description Species Chr Location OMIA gene details page Other Links
MSTN myostatin Sus scrofa 15 NC_010457.5 (94628440..94623526) MSTN Homologene, Ensembl , NCBI gene


By default, variants are sorted chronologically by year of publication, to provide a historical perspective. Readers can re-sort on any column by clicking on the column header. Click it again to sort in a descending order. To create a multiple-field sort, hold down Shift while clicking on the second, third etc relevant column headers.

WARNING! Inclusion of a variant in this table does not automatically mean that it should be used for DNA testing. Anyone contemplating the use of any of these variants for DNA testing should examine critically the relevant evidence (especially in breeds other than the breed in which the variant was first described). If it is decided to proceed, the location and orientation of the variant sequence should be checked very carefully.

Since October 2021, OMIA includes a semiautomated lift-over pipeline to facilitate updates of genomic positions to a recent reference genome position. These changes to genomic positions are not always reflected in the ‘acknowledgements’ or ‘verbal description’ fields in this table.

OMIA Variant ID Breed(s) Variant Phenotype Gene Allele Type of Variant Source of Genetic Variant Reference Sequence Chr. g. or m. c. or n. p. Verbal Description EVA ID Year Published PubMed ID(s) Acknowledgements
441 Pietrain (Pig) Muscular hypertrophy (double muscling) MSTN regulatory Naturally occurring variant Sscrofa11.1 15 g.94629236T>C Stinckens et al. (2008) describe polymorphism located at position 447 of the porcine MSTN promoter, EF490986 EF490990 g.447A>G rs332188828 2008 18822098

Cite this entry

Nicholas, F. W., Tammen, I., & Sydney Informatics Hub. (2024). OMIA:000683-9823: Online Mendelian Inheritance in Animals (OMIA) [dataset].


Note: the references are listed in reverse chronological order (from the most recent year to the earliest year), and alphabetically by first author within a year.

2024 Ren, J., Hai, T., Chen, Y., Sun, K., Han, Z., Wang, J., Li, C., Wang, Q., Wang, L., Zhu, H., Yu, D., Li, W., Zhao, S. :
Improve meat production and virus resistance by simultaneously editing multiple genes in livestock using Cas12iMax. Sci China Life Sci 67:555-564, 2024. Pubmed reference: 37987939. DOI: 10.1007/s11427-023-2407-0.
2023 Gao, K., Han, S., Li, Z., Luo, Z., Lv, S., Choe, H.M., Paek, H.J., Quan, B., Kang, J., Yin, X. :
Analysis of metabolome and transcriptome of longissimus thoracis and subcutaneous adipose tissues reveals the regulatory mechanism of meat quality in MSTN mutant castrated male finishing pigs. Meat Sci 207:109370, 2023. Pubmed reference: 37864922. DOI: 10.1016/j.meatsci.2023.109370.
Guo, X., Geng, L., Jiang, C., Yao, W., Jin, J., Liu, Z., Mu, Y. :
Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9. Anim Biotechnol 34:4703-4712, 2023. Pubmed reference: 36946758. DOI: 10.1080/10495398.2023.2187402.
Hua, Z., Xu, K., Xiao, W., Shu, C., Li, N., Li, K., Gu, H., Zhu, Z., Zhang, L., Ren, H., Zeng, Q., Yin, Y., Bi, Y. :
Dual single guide RNAs-mediating deletion of mature myostatin peptide results in concomitant muscle fibre hyperplasia and adipocyte hypotrophy in pigs. Biochem Biophys Res Commun 673:145-152, 2023. Pubmed reference: 37390747. DOI: 10.1016/j.bbrc.2023.06.053.
Kalds, P., Zhou, S., Huang, S., Gao, Y., Wang, X., Chen, Y. :
When less is more: Targeting the myostatin gene in livestock for augmenting meat production. J Agric Food Chem 71:4216-4227, 2023. Pubmed reference: 36862946. DOI: 10.1021/acs.jafc.2c08583.
Luo, Z.B., Han, S., Yin, X.J., Liu, H., Wang, J., Xuan, M., Hao, C., Wang, D., Liu, Y., Chang, S., Li, D., Gao, K., Li, H., Quan, B., Quan, L.H., Kang, J.D. :
Fecal transplant from myostatin deletion pigs positively impacts the gut-muscle axis. Elife 12:e81858, 2023. Pubmed reference: 37039469. DOI: 10.7554/eLife.81858.
Takebayashi, K., Wittayarat, M., Lin, Q., Torigoe, N., Liu, B., Hirata, M., Nagahara, M., Tanihara, F., Otoi, T. :
Efficiency of genetic modification in gene-knockout sperm-derived zygotes followed by electroporation of guide RNA targeting the same gene. Anim Sci J 94:e13842, 2023. Pubmed reference: 37218074. DOI: 10.1111/asj.13842.
Yang, S.P., Zhu, X.X., Qu, Z.X., Chen, C.Y., Wu, Y.B., Wu, Y., Luo, Z.D., Wang, X.Y., He, C.Y., Fang, J.W., Wang, L.Q., Hong, G.L., Zheng, S.T., Zeng, J.M., Yan, A.F., Feng, J., Liu, L., Zhang, X.L., Zhang, L.G., Miao, K., Tang, D.S. :
Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping. In Vitro Cell Dev Biol Anim 59:241-255, 2023. Pubmed reference: 37099179. DOI: 10.1007/s11626-023-00763-5.
2022 Choe, H.M., Gao, K., Paek, H.J., Liu, X.Y., Li, Z.Y., Quan, B.H., Yin, X.J. :
Silencing myostatin increases area fraction of smooth muscle in the corpus cavernosum of pigs. Anim Reprod Sci 247:107077, 2022. Pubmed reference: 36194928. DOI: 10.1016/j.anireprosci.2022.107077.
Choe, H.M., Quan, B.H., Paek, H.J., Luo, Z.B., Gao, K., Han, S.Z., Li, Z.Y., Kang, J.D., Yin, X.J. :
Altered fibrinogen level and fibrin clot structure in myostatin homozygous mutant pig. Anim Genet 53:307-316, 2022. Pubmed reference: 35285059. DOI: 10.1111/age.13187.
Gao, K., Luo, Z., Han, S., Li, Z., Choe, H.M., Paek, H.J., Quan, B., Kang, J., Yin, X. :
Analysis of meat color, meat tenderness and fatty acid composition of meat in second filial hybrid offspring of MSTN mutant pigs. Meat Sci 193:108929, 2022. Pubmed reference: 35961126. DOI: 10.1016/j.meatsci.2022.108929.
Pei, Y., Fan, Z., Song, Y., Chen, C., Mu, Y., Li, B., Feng, Z., Li, H., Li, K. :
Viscera characteristics of MSTN-edited heterozygous pigs. Front Genet 13:764965, 2022. Pubmed reference: 35299949. DOI: 10.3389/fgene.2022.764965.
Tu, C.F., Chuang, C.K., Yang, T.S. :
The application of new breeding technology based on gene editing in pig industry - A review. Anim Biosci 35:791-803, 2022. Pubmed reference: 34991204. DOI: 10.5713/ab.21.0390.
Wang, X., Petersen, B. :
More abundant and healthier meat: will the MSTN editing epitome empower the commercialization of gene editing in livestock? Sci China Life Sci 65:448-450, 2022. Pubmed reference: 34431041. DOI: 10.1007/s11427-021-1980-4.
2021 Fan, Z., Liu, Z., Xu, K., Wu, T., Ruan, J., Zheng, X., Bao, S., Mu, Y., Sonstegard, T., Li, K. :
Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production. Sci China Life Sci 65:362-375, 2021. Pubmed reference: 34109474. DOI: 10.1007/s11427-020-1927-9.
Hirata, M., Wittayarat, M., Namula, Z., Le, Q.A., Lin, Q., Takebayashi, K., Thongkittidilok, C., Mito, T., Tomonari, S., Tanihara, F., Otoi, T. :
Generation of mutant pigs by lipofection-mediated genome editing in embryos. Sci Rep 11:23806, 2021. Pubmed reference: 34903813. DOI: 10.1038/s41598-021-03325-5.
Omosule, C.L., Phillips, C.L. :
Deciphering myostatin's regulatory, metabolic, and developmental influence in skeletal diseases. Front Genet 12:662908, 2021. Pubmed reference: 33854530. DOI: 10.3389/fgene.2021.662908.
Paek, H.J., Luo, Z.B., Choe, H.M., Quan, B.H., Gao, K., Han, S.Z., Li, Z.Y., Kang, J.D., Yin, X.J. :
Association of myostatin deficiency with collagen related disease-umbilical hernia and tippy toe standing in pigs. Transgenic Res 30:663-674, 2021. Pubmed reference: 34304368. DOI: 10.1007/s11248-021-00275-6.
Singh, P., Ali, S.A. :
Impact of CRISPR-Cas9-based genome engineering in farm animals. Vet Sci 8:122, 2021. Pubmed reference: 34209174. DOI: 10.3390/vetsci8070122.
Xuan, M.F., Luo, Z.B., Han, S.Z., Li, Z.Y., Gao, K., Liu, X.Y., Chang, S.Y., Jin, Z.Y., Choe, H.M., Paek, H.J., Quan, B.H., Yin, X.J., Kang, J.D. :
Skeletal muscle-secreted myokine interleukin-6 induces white adipose tissue conversion into beige adipose tissue in myostatin gene knockout pigs. Domest Anim Endocrinol 78:106679, 2021. Pubmed reference: 34715416. DOI: 10.1016/j.domaniend.2021.106679.
Zhang, J., Khazalwa, E.M., Abkallo, H.M., Zhou, Y., Nie, X., Ruan, J., Zhao, C., Wang, J., Xu, J., Li, X., Zhao, S., Zuo, E., Steinaa, L., Xie, S. :
The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research. J Genet Genomics 48:347-360, 2021. Pubmed reference: 34144928. DOI: 10.1016/j.jgg.2021.03.015.
2020 Li, R., Zeng, W., Ma, M., Wei, Z., Liu, H., Liu, X., Wang, M., Shi, X., Zeng, J., Yang, L., Mo, D., Liu, X., Chen, Y., He, Z. :
Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs. Transgenic Res 29:149-163, 2020. Pubmed reference: 31927726. DOI: 10.1007/s11248-020-00188-w.
Li, W., Li, R., Wei, Y., Meng, X., Wang, B., Zhang, Z., Wu, W., Liu, H. :
Effect of MSTN mutation on growth and carcass performance in Duroc x Meishan hybrid population. Animals (Basel) 10:932, 2020. Pubmed reference: 32481564. DOI: 10.3390/ani10060932.
Menchaca, A., Dos Santos-Neto, P.C., Mulet, A.P., Crispo, M. :
CRISPR in livestock: From editing to printing. Theriogenology 150:247-254, 2020. Pubmed reference: 32088034. DOI: 10.1016/j.theriogenology.2020.01.063.
2019 Han, S.Z., Jin, S.S., Xuan, M.F., Guo, Q., Luo, Z.B., Wang, J.X., Kang, J.D., Yin, X.J. :
Semen quality and fertilization ability of myostatin-knockout boars. Theriogenology 135:109-114, 2019. Pubmed reference: 31207471. DOI: 10.1016/j.theriogenology.2019.05.047.
2018 Aiello, D., Patel, K., Lasagna, E. :
The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim Genet 49:505-19, 2018. Pubmed reference: 30125951. DOI: 10.1111/age.12696.
2017 Kang, J.D., Kim, S., Zhu, H.Y., Jin, L., Guo, Q., Li, X.C., Zhang, Y.C., Xing, X.X., Xuan, M.F., Zhang, G.L., Luo, Q.R., Kim, Y.S., Cui, C.D., Li, W.X., Cui, Z.Y., Kim, J.S., Yin, X.J. :
Generation of cloned adult muscular pigs with myostatin gene mutation by genetic engineering. RSC Advances 7:12541-12549, 2017. DOI: 10.1039/C6RA28579A.
Wang, K., Tang, X., Xie, Z., Zou, X., Li, M., Yuan, H., Guo, N., Ouyang, H., Jiao, H., Pang, D. :
CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res 26:799-805, 2017. Pubmed reference: 28993973. DOI: 10.1007/s11248-017-0044-z.
2016 Bi, Y., Hua, Z., Liu, X., Hua, W., Ren, H., Xiao, H., Zhang, L., Li, L., Wang, Z., Laible, G., Wang, Y., Dong, F., Zheng, X. :
Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep 6:31729, 2016. Pubmed reference: 27530319. DOI: 10.1038/srep31729.
Wang, K., Tang, X., Liu, Y., Xie, Z., Zou, X., Li, M., Yuan, H., Ouyang, H., Jiao, H., Pang, D. :
Efficient Generation of Orthologous Point Mutations in Pigs via CRISPR-assisted ssODN-mediated Homology-directed Repair. Mol Ther Nucleic Acids 5:e396, 2016. Pubmed reference: 27898095. DOI: 10.1038/mtna.2016.101.
2015 Qian, L., Tang, M., Yang, J., Wang, Q., Cai, C., Jiang, S., Li, H., Jiang, K., Gao, P., Ma, D., Chen, Y., An, X., Li, K., Cui, W. :
Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep 5:14435, 2015. Pubmed reference: 26400270. DOI: 10.1038/srep14435.
Wang, K., Ouyang, H., Xie, Z., Yao, C., Guo, N., Li, M., Jiao, H., Pang, D. :
Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 System. Sci Rep 5:16623, 2015. Pubmed reference: 26564781. DOI: 10.1038/srep16623.
2011 Stinckens, A., Georges, M., Buys, N. :
Mutations in the myostatin gene leading to hypermuscularity in mammals: indications for a similar mechanism in fish? Anim Genet 42:229-34, 2011. Pubmed reference: 21175702. DOI: 10.1111/j.1365-2052.2010.02144.x.
2008 Stinckens, A., Luyten, T., Bijttebier, J., Van den Maagdenberg, K., Dieltiens, D., Janssens, S., De Smet, S., Georges, M., Buys, N. :
Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Anim Genet 39:586-96, 2008. Pubmed reference: 18822098. DOI: 10.1111/j.1365-2052.2008.01774.x.
2007 Guimaraes, S.E.F., Stahl, C.H., Lonergan, S.M., Geiger, B., Rothschild, M.F. :
Myostatin promoter analysis and expression pattern in pigs. Livestock Science 112:143–150, 2007.
2005 Stinckens, A., Bijttebier, J., Luyten, T., Van den Maagdenberg, K., Harmegnies, N., De Smet, S., Georges, M., Buys, N. :
Detection of polymorphisms in the myostatin gene in Belgian Pietrain pigs. Commun Agric Appl Biol Sci 70:37-41, 2005. Pubmed reference: 16366271.
1980 Ollivier, L. :
Genetic determination of muscular hypertrophy in the pig Annales de Genetique et de Selection Animale 12:383-394, 1980.
1967 Ollivier, L., Lauvergne, J.J. :
[A study of the inheritance of the muscular hypertrophy of the Pietrain pig: preliminary results] Annales de Medecine Veterinaire 111:104-109, 1967.

Edit History

  • Created by Frank Nicholas on 15 Jul 2011
  • Changed by Frank Nicholas on 08 Oct 2011
  • Changed by Frank Nicholas on 09 Dec 2011
  • Changed by Frank Nicholas on 03 Dec 2013
  • Changed by Frank Nicholas on 01 Dec 2016
  • Changed by Imke Tammen2 on 17 Jun 2021
  • Changed by Imke Tammen2 on 25 Jun 2021
  • Changed by Imke Tammen2 on 11 Aug 2021
  • Changed by Imke Tammen2 on 11 Jan 2022
  • Changed by Imke Tammen2 on 30 Jan 2022
  • Changed by Imke Tammen2 on 13 Sep 2022
  • Changed by Imke Tammen2 on 25 Nov 2022
  • Changed by Imke Tammen2 on 12 Dec 2023
  • Changed by Imke Tammen2 on 08 Apr 2024